In today’s market, we see three major challenges standing in the way of enterprises seeking to leverage AI for a competitive edge:
In fact, 67% of IT leaders named the AI skills shortage as the number one barrier to deploying AI, according to Rackspace Technology. Yet recent AI-related job postings from July are 450% YoY, highlighting that this hasn’t stopped them from trying.
To further counter this shortage, enterprises are shifting talent within traditional technology and data roles to AI-related priorities, implementing AI point solutions to replace customer service representatives, and leveraging the flexibility of freelancers in a move that is shoring up the gig economy. But none of these have delivered the outcomes enterprises are looking for.
Instead, the clearest path to ROI may lie in a strategic partner that merges the best of human and artificial intelligence within a single end-to-end technology solution. Let’s dive in.
An effective enterprise AI solution can’t simply be patched together. To understand why, let’s look at the varying degrees of AI adoption within an enterprise.
Many models depict enterprise AI adoption across three levels, with AI integration deepening within an enterprise’s operations at each step. Egon Zehnder is one such organization.
Here’s our take, including what adoption looks like at each stage:
Level 1: AI is introduced in an organization
Goals: Automate and increase the efficiency of repetitive low-complexity tasks, or improve the customer experience.
Level 2: Business processes become centered in AI
Goals: Increase the efficiency and quality of an entire business function’s output and optimize value-creation for a key product.
Level 3: An organization is fully AI-enabled
Goals: Engage on every opportunity, maximize business productivity and outcomes, and widen the gap with competitors.
Off-the-shelf AI tools tend to cater to enterprises at Level 1. But as enterprises scale to Levels 2 and 3, costs and complexity begin to mount.
That’s because, at each level of adoption, the expertise and resources required scale exponentially. Based on our experience working with the leading AI model development firms and enterprises deploying AI, here is our assessment of the organizational requirements for Levels 2 and 3:
At this stage, an AI model is integrated within an enterprise’s operations at a larger scope. The stakes for having an accurate and robust solution are higher, so enterprises need:
Use case example: A healthcare firm utilizing a conversational AI tool that integrates with EMRs and is fine-tuned on preference data from domain experts.
When enterprises reach this level of adoption, they are shaping business-critical processes around one or more AI models working in concert. They need:
Use case example: A financial institution deploying multiple generative AI models to improve fraud detection response accuracy and speed.
For a business restructuring its operations around AI, the requirements listed above necessitate either a monumental shift in internal resources or a recruiting effort of similar cost and magnitude. Both routes threaten ROI due to their expense and complexity.
The strongest alternative is a partner experienced in AI model training and deployment. While many claim to transform enterprises with AI, few offer an end-to-end solution — this is where Invisible steps in.
This platform enables:
Invisible’s value proposition lies in our deep relationships with the world’s leading AI model development firms, for whom we provide human-in-the-loop data training that delivers more accurate and helpful models.
This unique position grants our enterprise partners a head start in their AI journey with access to the latest thinking in AI and deep expertise in the most powerful models, allowing us to craft solutions that maximize model efficiency, while negating the need for additional recruitment, team shifts, or tech investments, ensuring businesses are AI-enabled and ROI-focused.
A retail giant required a precise, high-throughput solution for enhancing product descriptions for its online marketplace. Cluttered third-party data obscured listings from search engines, leaving millions in revenue on the table.
Invisible crafted a dual-AI solution combined with human expertise in which one AI model enriched data from scraped content, while another identified and flagged errors. Errors were then refined by human experts.
The outcome? Invisible enriched a vast product range swiftly, surpassing other solution providers. The retailer witnessed a staggering 9x ROI within a month.
Ready to harness AI's power for your enterprise? Discover how Invisible can be your strategic partner here.